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Although the hydrated electron has been studied in con-
densed phases for about twenty-five years,' its microscopic
nature continues to be an intriguing topic. Individual water
molecules do not bind excess electrons,? yet bulk water read-
ily solvates them, implying that the association of electrons
with water is a multibodied interaction requiring a collection
of molecules. This sparked speculation that water clusters of
some size ought to bind excess electrons,® and several years
ago, the long predicted, gas-phase water cluster anions,
(H,0),, were observed mass spectrometrically by Haber-
land and co-workers.* Following this development, several
experimental®~® and theoretical '>~'? studies on water cluster
anions were undertaken, among them our work on the pho-
todetachment of electrons from (H,0),_.67.10695
(D;0), 26711235 Al 13 (H0)y, Ar,_5(D0);,
Ar(H,0),_¢., and Ar(D,0),_,,. Here, we present the
photoelectron spectra of (H,0)_, ¢ as representative of
these studies (see Fig. 1).

The spectra of (H,0), _, . exhibit structure, with vi-
brational features observed on the high electron binding en-
ergy (EBE) side of the main peaks. Isotopic and source con-
dition studies suggest that the two lowest EBE features in the
spectra of n = 6 and 7 may represent different isomers of
each of these species. The spectra of (H,0),,, consist of
single, broad, asymmetric peaks. The EBEs of the peak
maxima in these spectra were interpreted as vertical detach-
ment energies (VDEs), and these shift to successively higher
EBEs with increasing n. In particular, for n = 11-69 the
VDEs increase smoothly from 0.75 eV to 1.92 eV with no
abrupt changes.

An important question regarding water cluster anions
concerns whether they are gas-phase counterparts to con-
densed-phase hydrated electrons. To address this issue, the
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datais presented as VDE vs n = ' in Fig. 2. For n3> 11 and for
the lowest EBE peaks of n = 6 and 7, the VDEs plot linearly
with #~'/% and extrapolate to an intercept of 3.3 V. The
intercept, VDE at n = o, should correspond to the photo-
electric threshold for bulk hydrated electrons. This thresh-
old can be determined indirectly from the sum of the photo-
conductivity threshold and V,, the conduction band edge.
For the hydrated electron in ice, the photoconductivity
threshold is ~2.3 eV,'” while V,is ~0.9 eV,'® implying that
the bulk photoelectric threshold is ~ 3.2 eV, in agreement
with our extrapolated value. Several theoretical estimates of
the photoelectric threshold range from 3-4 eV, further sup-
porting the extrapolation to 3.3 eV.'? (In addition, the same
analysis of our data for (NH;), _ 4,_1100 Yields an intercept
which is very close to the measured photoelectric threshold
for bulk ammoniated electrons.?®) The linear extrapolation
of the water cluster anion data to the analogous bulk proper-
ty implies that water cluster anions of sizes n>11 (and per-
haps forms of n = 6,7) are counterparts to bulk hydrated
electrons, i.e., they are embryonic forms of hydrated elec-
trons which will mature with size toward condensed-phase
hydrated electrons.

Landman and co-workers have developed a linear rela-
tion between VDE and n ~'/? which is based on a dielectric
continuum model and which is valid for a spherical charge
distribution in a uniform dielectric.'! They expect this rela-
tionship to hold for water cluster anions having internal ex-
cess electron states, but not necessarily for those exhibiting
surface electron states. Of the two, only cluster anions with
internal states are consistent with solvated electron-like en-
vironments. In this VDE vs n~'/* analysis, the intercept
again corresponds to the bulk photoelectric threshold, while
the slope is comprised of several factors, including R_, the
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FIG. 1. The negative ion photoelectron (photodetachment) spectra of
(H,0),, n=12,6,7,11-28,30,34,37,47,57,69 are presented above. These
were recorded with visible photons and with an instrumental resolution of
30 meV. Our apparatus has been described previously.'* Water cluster an-
ions were generated in a supersonic expansion ion source, using Ar/H,O
mixtures.'> Any OH ™ (H,0), cluster anions which may have been present

insmall amounts could not have contributed to the spectra of (H,0), since
OH ™ (H,0,), and thus its larger analogs, do not photodetach at visible
wavelengths.'®

effective radius of a single solvent molecule. The data for
n>11 and for the lowest EBE forms of n = 6,7 conform well
to a straight line (see Fig. 2). The intercept agrees with theo-
retical and experimental estimates of the threshold, as dem-
onstrated above, and the slope implies R, = 1.95 A which
compares favorably with the bulk R value. This is consis-
tent with water cluster anions n>11 (plus the lowest EBE
forms of n = 6,7) existing as internal states, and thus, as
embryonic hydrated electrons, supporting the interpretation
given above. The dimer anion is, by definition, a surface
state. Perhaps the higher EBE isomers of n = 6,7 are also
surface states.

Quantum path integral MD simulations by Landman
and co-workers find water cluster anions to be surface states
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FIG. 2. The vertical detachment energies of (H,O), , including the two
lowest EBE peaks of n = 6,7 which are believed to derive from different
isomers, are plotted vs #~ '”*. The VDEs for #>> 11 (and for the lowest forms
of n = 6,7) show a linear dependence vs #~ '/*. The linear least squares fit of
the data corresponds to — VDE = — 3.30 + 5.73n~ '/* (correlation coef-
ficient of 0.998).

n <32 and internal states for n>64, with the transition oc-
curring between n = 32-64."" Although their calculated
surface state VDEs for n = 12,18, and 32 are in accord with
our measured VDEs, we observe no indication of a transition
between n = 32-64, and the evidence presented above sug-
gests the transition to internal states occurs by #n = 11, if not
by n = 6. These calculations are in qualitative agreement
with our interpretation of the data, however, for they predict
small water cluster anions to be surface states which evolve
with size into internal electron states.
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In 1985 DeVore and Gallaher' measured the vibrational
frequency of the product of a reaction of TiCl, and NaF in
quartz tube at 1000 K. Such a reaction may produce all prod-
ucts of the form TiF, Cl, _ ,, for n = 0,4, but based on avail-
able thermodynamic data DeVore and Gallaher concluded
that the only product was TiF,. They therefore assigned a
band observed at 772 cm ™! to the v, (asymmetric stretch-
ing) mode of TiF,. The observation of only one vibration in
this region of the spectrum is consistent with an assignment
to a molecule with 7, symmetry.

Very recently, however, Beattie and Jones have shown?
that the v, band of TiF, lies at 800 cm—'. DeVore and Gal-
laher” agreed with this assignment, but questioned what spe-
cies then gave rise to the 772 cm~! band they had previously
observed.

In this work we report ab initio calculations for the vi-
brational frequencies of all of the possible TiF,Cl, _, prod-
ucts. Our calculations strongly suggest that the band at 772
cm ™! is actually due to TiFCl,.
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The Ti basis set is derived from the (1459p5d) primitive
set of Wachters,* contracted to [8s4p3d] using his contrac-
tion 3. Two diffuse 2p functions (@ = 0.1523 and 0.033) are
added to describe the 4p orbital; the Hay’ diffuse 3d function
is also added. The F basis set is the Dunning® double-zeta
contraction of the Huzinaga’ primitive set. A diffuse p func-
tion (a = 0.1) is added to describe F~. This yields an F basis
of the form (9s6p)/[4s3p]. The Cl basis set is the (1259p)/
[6s5p] Cl— basis set of McLean and Chandler.® The geome-
try is optimized at the SCF level and the frequencies and
infrared intensities are computed using analytic derivative
methods. We actually compute harmonic frequencies, but
the difference between the harmonic values and fundamen-
tals can be expected to be negligible for our present purpose:
anharmonicities for transition metal diatomic fluorides are
only a few cm ', and there should be no Fermi resonances
that affect the fundamentals.

As we show below, the SCF results for TiF, and TiCl, in
these small basis sets are in good agreement with experiment.
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